Basal rather than induced heme oxygenase-1 levels are crucial in the antioxidant cytoprotection.

نویسندگان

  • Sei-ichiro Tsuchihashi
  • Masha Livhits
  • Yuan Zhai
  • Ronald W Busuttil
  • Jesus A Araujo
  • Jerzy W Kupiec-Weglinski
چکیده

Heme oxygenase-1 (HO-1) overexpression protects against tissue injury in many inflammatory processes, including ischemia/reperfusion injury (IRI). This study evaluated whether genetically decreased HO-1 levels affected susceptibility to liver IRI. Partial warm ischemia was produced in hepatic lobes for 90 min followed by 6 h of reperfusion in heterozygous HO-1 knockout (HO-1(+/-)) and HO-1(+/+) wild-type (WT) mice. HO-1(+/-) mice demonstrated reduced HO-1 mRNA/protein levels at baseline and postreperfusion. This corresponded with increased hepatocellular damage in HO-1(+/-) mice, compared with WT. HO-1(+/-) mice revealed enhanced neutrophil infiltration and proinflammatory cytokine (TNF-alpha, IL-6, and IFN-gamma) induction, as well as an increase of intrahepatic apoptotic TUNEL(+) cells with enhanced expression of proapoptotic genes (Bax/cleaved caspase-3). We used cobalt protoporphyrin (CoPP) treatment to evaluate the effect of increased baseline HO-1 levels in both WT and HO-1(+/-) mice. CoPP treatment increased HO-1 expression in both animal groups, which correlated with a lower degree of hepatic damage. However, HO-1 mRNA/protein levels were still lower in HO-1(+/-) mice, which failed to achieve the degree of antioxidant hepatoprotection seen in CoPP-treated WT. Although the baseline and postreperfusion HO-1 levels correlated with the degree of protection, the HO-1 fold induction correlated instead with the degree of damage. Thus, basal HO-1 levels are more critical than the ability to up-regulate HO-1 in response to the IRI and may also predict the success of pharmacologically induced cytoprotection. This model provides an opportunity to further our understanding of HO-1 in stress defense mechanisms and design new regimens to prevent IRI.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Curcumin attenuates dimethylnitrosamine-induced liver injury in rats through Nrf2-mediated induction of heme oxygenase-1.

Curcumin (diferuloymethane), a yellow colouring agent present in the rhizome of Curcuma longa Linn (Zingiberaceae), has been reported to possess anti-inflammatory, antioxidant, antimutagenic and anticarcinogenic activities. Curcumin exerts its chemoprotective and chemopreventive effects via multiple mechanisms. It has been reported to induce expression of the antioxidant enzymes in various cell...

متن کامل

Heme oxygenase-1 is a cGMP-inducible endothelial protein and mediates the cytoprotective action of nitric oxide.

Inducible heme oxygenase (HO-1) has recently been recognized as an antioxidant and cytoprotective gene. By use of Western blotting, cell viability analysis, and antisense technique, the present study investigates the involvement of HO-1 in endothelial protection induced by the clinically used nitric oxide (NO) donor molsidomine (specifically, its active metabolite 3-morpholinosydnonimine [SIN-1...

متن کامل

Nrf2-mediated mucoprotective and anti-inflammatory actions of Artemisia extracts led to attenuate stress related mucosal damages

The aim of this study was to compare biological actions between isopropanol and ethanol extracts of Artemisia including antioxidant, anti-inflammatory, and cytoprotective actions. Antioxidant activities were evaluated using 2,2-diphenyl-1-picrylhydrazyl (DPPH) method and confocal microscopy on lipopolysaccharide-induced RGM1 cells, cytoprotection effects evaluated by detecting heme oxygenase-1 ...

متن کامل

Cytoprotection of human endothelial cells from menadione cytotoxicity by caffeic acid phenethyl ester: the role of heme oxygenase-1.

Caffeic acid phenethyl ester (CAPE), derived from various plant sources, has been shown to ameliorate ischemia/reperfusion injury in vivo, and this has been attributed to its ability to reduce oxidative stress. Here we investigated the cytoprotection of CAPE against menadione-induced oxidative stress in human umbilical vein endothelial cells (HUVEC) to evaluate potential gene expression involve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of immunology

دوره 177 7  شماره 

صفحات  -

تاریخ انتشار 2006